

LLVM and the state of sanitizers on
BSD

Speaker : David Carlier
Software engineer living in Ireland, contribute to
various opensource projects directly or indirectly
related to FreeBSD and OpenBSD mainly, from

enterprise solutions to more entertaining ones like
video games, contributor LLVM since end of 2017,

committer since May 2018.
Write time to time for BSDMag.

Status on FreeBSD and OpenBSD

How it had started ?
● It often starts from “frustration” :-).
● Indeed, after having tried fuzzer under Linux, I realized it was

not supported under FreeBSD.
● After this came Xray instrumentation and MemorySanitizer.
● Somewhere in between, started to port

UndefinedBehaviorSanitizer, libFuzzer and Xray as well..
● After getting into enough people's nerves, you get commit

access.

Where are we ?

FreeBSD

asan

safestack

msan

libFuzzer

Xray instrumentation

OpenBSD

ubsan

ubsan

libFuzzer

Xray instrumentation

Cannot have asan/msan/tsan
ASLR cannot be disabled
Cannot map large regions

(shadow memory)

What is fuzzing all about ?

● It is a testing technique, “invented” in late 80'a by Barton Miller,
when basically you try to give random data to your software and
its dependencies included.

● Inputs source come from what call “corpus”
● It is good to find particular set of bugs, based on input handling

basically while trying to cover as much as possible code paths
by mutating these inputs.

● Ideally running long, as the data will undergo some “mutation” in
the process, as necessary until it crashes eventually.

● Completes traditional unit tests set too.

What corpus means ?

● Place holder for inputs, inputs which suit the particular software.
● Let's imagine an image library reader which relies on specific

binary format header to recognise if it is png/jpeg and so on.
● The corpus will then contain hand crafted data for a particular

test.
● There is possibly more than one corpus but those corpus could

possibly be merged, keeping only the relevant mutation results.
● Those mutations will be then stored (and to be reused) in this

corpus.

No worries libfuzzer is not
radioactive :-)

● Not yet at least
● Mutation simply means some bytes are deleted, some others

are inserted, got shuffled at random offsets. A dictionary (format
key=value) can be used too.

● A dictionary is to guide the mutation when the target software’s
vocabulary is complex.

● Software developers might start to sweat ... That would trigger a
segfault, stack overflows or SIGBUS throwing.

● Well ... that s the whole point ;-)

Fuzzer workflow

Application

Corpus/Input

Corpus/Input

Corpus/Input

Corpus/Input

...

Data
mutation

Mutation
Stored

In the corpus
folder

How does it works under LLVM

● Basic flag is -fsanitize=fuzzer to gives to either the C or C++ frontend.

● The code in question needs to have a specific entry point at minimum to
receive the input data, main is already present.

● You can also customize the mutation’s part.

● Can be combined with another sanitizer flag as ubsan, asan, msan, even
lsan ...

● Once the binary built, has plethora of options.

● Test cases which crashes the code are stored into crash-* files.

We said options ?

● A fuzzed library run each time the whole process, we can limit
the number of runs. Limits the max length of the incoming
inputs. How long the tests runs.

● Can be ran with parallel jobs and workers with a specific logging
for each.

● Enable/disable certain signal interruption handlings.
● Limit the memory usage.
● Control the degree of mutation.
● Merge N corpus into one.

X-Ray instrumentation

● Is a run time call tracing facility. Mainly made for function timing
measurements. Mainly maintained by Dean Berris.

● Can be refined by explicitly tracing or not tracing certain
functions via clang attributes, configuration files or at least by
function thresholds.

● Can be enabled/disabled at runtime.
● When disabled, the performance overhead is usually non

existent but has a more noticeable performance difference
when enabled but somehow suited to be ran in production.

● But usually only to be run for a certain time and for a subset of
functions in order to collect enough data dependent also on the
function threshold and the memory usage limit wish for the in
memory buffer data collection.

How does it work

● Xray injects instrumentation hooks at function entry and exits.

● Empty hooks until xray is enabled so as runtime thus replaced by cycle
counter, function identifier, thread id, base address metadata.

● The basic flag is -fxray-instrument

● Our binaries contains now xray_instr_map and xray_fn_idx sections.
● We need means to extract those data from the Elf binary to generate our call

graphs => llvm-xray

● Can generate call graphs. Can generate tracing format for Chrome.

● Accounting is also a feature to display where the code spends most of the
time.

● There is logging options settable via XRAY_OPTIONS => tracing from
beginning to end (patch_premain), verbosity, mode ...

Accounting is not what you think !

● ... But Is more about to display the code used and the
cumulative time spent for each.

● If it is a multithread program, data can possibly be aggregated.
● Can be sorted by any column, formatted as csv
● Can give a good idea of the possible bottlenecks.

Modes ?

● Comes with basic mode (ie generating the xray-log* files) and a
more advanced one called FDR (Flight Data Recorder).

● FDR allows to, programmatically, trace a precise amount of
data basically by adding the start point of recording and the
flushing end point.

● Llvm-xray supports for sure both modes, output formats will
differ.

● For now the basic mode is the most reliable.

Xray workflow

 binary with xray Elf sections present

Gathering code statistics into a xray-log.* file

llvm-xray

extract account

Generates a
YAML output

For each
Function hooks

(enter/exit)

Instrumented
Functions time

Counter statistic
output

convert graph

Call graph of
The instrumented

Functions
Compatible with
Dot to generate
Svg and so on

Converts the
Xray-log*

File to YAML

Other features and ongoing/future
work

● LibFuzzer mutation/coverage increase statistics (ongoing).
● A new (optional) basic W^X detection had been added and

available for most of sanitizers (asan, msan, tsan...).
● Similar feature had been added in the code verification at

compile time (aka scan-build toolsuite).
● Porting CFI to FreeBSD/NetBSD (in review).
● Despite the build is supported under FreeBSD, lsan is not

workable and not doable yet (needs to be able to suspend the
thread (aka Stop the world)).

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

